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The zones of influence and dependence for three-dimensional boundary-layer 
equations first studied by Raetz are re-examined from the viewpoint of the 
subcharacteristics. It is shown that in contrast, the zones of influence and 
dependence for a totally hyperbolic system are determined by the characteristics; 
for the present parabolic system of three-dimensional boundary-layer equations, 
the zones are determined by the characteristics and subcharacteristics. The same 
idea should be applicable to more general systems of equations of similar type. 
- 

1. Introduction 
In  the classical theory of partial differential equations (see, for example, 

Courant 1962), the zones of influence and dependence for general second-order 
partial differential equations with two independent variables are well known. 
Apart from some special cases, extension of the same idea to equations of higher 
order and more than two independent variables has been limited to two limiting 
types of problems, the totally hyperbolic and totally elliptic. These two limiting 
cases are defined by the roots of the characteristic equation being either all real 
and distinct or being all imaginary. As for the more general intermediate cases, 
for example, the case of multiple zero roots, there is no known method for com- 
plete determination of the zones of influence and dependence from classical 
theory of partial differential equations, at least, to the author’s knowledge. 
Among this latter category of fluid mechanics interest is the system of three- 
dimensional boundary-layer equations. 

The characteristics of three-dimensional boundary-layer equations were first 
investigated by Raetz (1957) and later by Der & Raetz (1962). Their physical 
picture of the zones of influence and dependence is easy to understand, but Raetz’s 
(1957) mathematical derivations were not so clear. The purpose of this work is to 
present a different derivation based on the concept of subcharacteristics. The 
present derivation is believed to be simpler and more instructive. The idea of the 
zones of idhence and dependence is of prime importance to the computation of 
three-dimensional boundary layers. 

The concept of subcharacteristics was introduced in connexion with the 
singular perturbation problem (Lagerstrom, Cole & Trilling 1949; Cole 1968). 
Our motivation in relating the boundary-layer problem to the singular pertur- 
bation problem should not cause surprise because this is where the subject of 
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singular perturbation was first started. However we shall show that the sub- 
characteristics studied by these authors determine only the substructure of 
the flow and hence play a secondary role; while the subcharacteristics con- 
sidered here share a major role with the characteristics in determining the main 
structure of the flow. In  contrast, the zones of influence and dependence for a 
totally hyperbolic system are determined by the characteristics; for the present 
parabolic system, the zones are seen to be determined by the characteristics 
and subcharacteristics. 

2. Equations 
Although our purpose is to study the Characteristics and the related zones of 

influence and dependence of the boundary-layer equations, we choose to begin by 
determining those of the complete Navier-Stokes equations and deduce from 
them those for the boundary-layer case. This approach provides instructive 
comparisons and helps to understand the subject better. 

For simplicity, we consider the incompressible Navier-Stokes system of 
equations in Cartesian co-ordinates. 

au av aw -+-+- = 0, 
ax ay ax 

au au a% ap 
u-+v-+w- ax ay az = --+v pax ([ g] + [ $1 +$) , 

av aw av 
u-+w-+w- ax ay az = --+v pay ap ([g]+[$]+$), (1c) 

where the square brackets indicate the terms which disappear in the boundary- 
layer approximation. x and yare parallel and z normal to the body surface, u, v and 
ware the corresponding velocities, p pressure, p density and v kinematic viscosity. 

3. Characteristics 
To study the characteristics, only the highest derivative terms in each equation 

of the system are of concern. If S2 denotes the characteristic surface, then the 
corresponding characteristic determinant, &, for the systems (1 a-d) can be shown 
to be (see Petrovsky 1954, p. 33; or Courant 1962, p. 173) 
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where 

and the square brackets again indicate the termswhich disappear in the boundary- 
layer approximation. The terms on the first row originate from the continuity 
equation, and the terms along the last column come from the contribution of the 
pressure gradients. A is obviously associated with the diffusion terms. Upon 
expansion, ( 2  a) yields 

-((-)".;)".:) ] Navier-Stokes ( 2 b )  

incompressibility 
1 ag 2 diWlsion Q=(I  ax continuity elliptic diiTuaion 

parabolic parabolic 

(g) (v (g)")" Boundary layer. ( 2 4  

Equations (Zb, c )  express the known property that the NavierStokes equations 
are elliptic, while the boundary-layer equations are parabolic. This is because the 
characteristic equation (setting Q = 0) has no real root in the case of the Navier- 
Stokes equations, but all five roots are real and equal in the boundary-layer case. 

8!2/az = 0 implies that all surfaces Q(x,  y) = 0 normal to the body surface are 
characteristic surfaces. It also indicates that the speed of disturbances is infinite 
in the z direction. However, nothing is said about the characteristics in the z and 
y directions. Hence, on the basis of the characteristics alone, propagation in the 
z and y directions is unlimited. It is at this juncture that classical theory of 
characteristics does not tell us how to proceed further. In  the next section, we 
propose to resolve this question from the viewpoint of subcharacteristics. 

Before we turn to the subcharacteristics, we would like to point out certain 
features of ( 2 b ,  c ) .  Equation ( 2 b )  has two factors, each of which is of the same 
elliptic nature, but each has a different physical meaning. The first factor is 
caused by a combination of the continuity and pressure terms and therefore 
expresses the property of 'incompressibility ' associated with an incompressible 
Navier-Stokes system. The second factor of ( 2 b )  represents the diffusion effect. 

During the change-over to the boundary-layer case, the difference between the 
second factors of ( 2 b )  and (2c) is obvious, namely diffusion along directions 
parallel to the surface is neglected; but the difference between the first factors of 
( 2  b )  and (2c)  brings out a concept which has thus far not been widely appreciated. 
Tbe first factor of ( 2 c )  arises from the continuity equation, but has nothing to do 
with the pressure. Therefore one cannot relate it in any way to the idea of 
incompressibility, since the latter is defined by the ratio of the changes in pressure 
and density. Although it is well known that pressure is assumed given in the 
boundary-layer theory, what is less well known is that the boundary-layer 
approximation makes an 'incompressible ' boundary-layer flow no longer have 
the property of 'incompressibility '. 

Reduction from ( 2  b)  to ( 2 c )  thus reveals that both physical processes - lateral 
diffusion and incompressibility (or infinite sound speed) - which may generate the 
upstream influence are lost in the boundary layer. This is a more physical argu- 
ment than the bare observation that the governing equations become parabolic. 
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4. Subcharacteristics 
The subcharacteristics of the system are obtained by neglecting the viscous 

terms in (1 6 ,  c ,  d). The subcharacteristics so obtained are just the characteristics 
of the corresponding inviscid equations. For the Navier-Stokes system, the 
inviscid counterpart is the Euler equations. The required characteristic deter- 
minant is 

Q =  

where 

an an an 

A* 0 0 [g] 
0 A* 0 [g] 

_ _ _  
ax ay ax 

and the square brackets as before indicate the boundary-layer approximation. 
A* is now associated with the convection terms. From (3a) 

parabolic 

Euler 

convection 
Boundary layer. 

parabolic (g)- hyp!E?Lor parabolic 

The first factor of ( 3 b )  is the same as that of (2 b) ,  and hence represents the elliptic 
nature. The second factor of ( 3 b )  indicates that the streamlines are subcharac- 
teristics. They are neither hyperbolic nor parabolic in the usual sense because the 
two real roots are neither different nor equal to zero. Similar remarks apply to 
the corresponding boundary-layer case of (3c). In  particular, we note that 
although the streamlines are the subcharacteristics for both the Navier-Stokes 
equations and the boundary-layer equations, they play a different role in the two 
oases. 

When the characteristic equation such as ( 3 b )  contains factors of different 
nature, elliptic and others, the elliptic one is dominant. The reason for this will 
become apparent in the next section. Euler equations, therefore, are elliptic. 

5. Zones of influence and dependence 
The streamlines as subcharacteristics carry a disturbance with the flow, that is 

to say, a disturbance is merely convected with finite local velocity along the 
streamlines. In  the case of Navier-Stokes equations, a disturbance is also trans- 
ferred instantly in all directions through diffusion or because of incompressibility. 
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This is because both the signal velocity of diffusion and the sound velocity 
of an incompressible medium are infinite. Due to the vast difference in speed, a 
disturbance transferred through diffusion or the infinite sound velocity always 
overtakes that moved by convection. As a consequence, a disturbance a t  any 
point affects the entire flow field. The subcharacteristics or streamlines are 
present, but they do not play a role in determining the main flow structure. 

In  contrast, in the case of the boundary-layer equations, the subcharacteristics 
or streamlines do play a role in determining the main flow structure. Here 
diffusion prevails in the normal (to the body surface) direction only, while the 
incompressibility property also gets lost in the process of the boundary-layer 
approximation. A disturbance carried by a streamline will hence not be over- 
taken along the two surface-parallel directions. Consequently a disturbance at a 
point P (figure 1) first affects instantly the normal line AB through P, and then is 

Flow 

.L) 

Characte: 
Projection of outmost 

ristics subcharacteristics 

FIGURE 1. Zones of influence and dependence. 

convected downstream by all streamlines crossing AB. The zone of influence is a 
wedge-shaped region bounded by two characteristic surfaces each containing an 
outmost subcharacteristic or streamline crossing AB. Similarly the zone of 
dependence for point P is the corresponding wedge-shaped region facing up- 
stream. Thus we arrive at the same picture as Raetz but from a different, view- 

The preceding discussion applies also to two-dimensional boundary layers 
simply by neglecting the derivatives a/@. Now all the streamlines are confined to 
the (x ,x )  plane and, as the wedge angle of figure 1 shrinks to zero, the zones of 
influence and dependence of a point P become the entire regions downstream and 
upstream of APB. 

Raetz considered that the three-dimensional boundary-layer equations are an 
elliptic system in the z-direction and a hyperbolic system in the other directions, 
while in all two-dimensional cases, these equations degenerate to a parabolic 
system. Although the label-designation is not important, to so characterize the 
difference between two- and three-dimensional cases may, nevertheless, readily 
be misunderstood. The implications seem to be that the three-dimensional 

point. 
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boundary-layer equations are not ‘parabolic ’, while the two-dimensional 
equations do not have the property of being elliptic in one direction and hyper- 
bolic in another. Actually this is not the case. Even in the two-dimensional case, 
the system of equations still may be looked on as elliptic in one direction and 
hyperbolic in the other. Such an interpretation for the classical heat equation is 
discussed by Sommerfeld (1949). 

6. Practical application 
The practical applications of the zones of influence and dependence in the usual 

supersonic aerodynamics can be used analogously to the three-dimensional 
boundary layer. In  the following, we would like to mention two examples. 

One is concerned with the finite difference solutions for three-dimensional 
boundary layers. In  obtaining these numerical solutions, the concept of the zones 
of influence and dependence is essential. The rationale for this is embraced in the 
so-called Courant-Friedrichs-Lewy condition (see, for example, Issacson & 
Keller 1966) for the convergence of the solution of the difference equations to  that 
of the corresponding differential equation. 

Unlike the usual linearized supersonic flow where these zones of influence and 
dependence can be determined beforehand, in the non-linear boundary-layer 
flow these zones vary from point to point and are not known until the solution is 
obtained. Rigorous implementation of the rule of these zones in the boundary- 
layer case greatly complicates the computational procedure. To a large extent, 
consideration of this rule may decide the method of computation (Hall 1967, 
Wang 1969) one should use. 

Ignoring the zone of dependence in actual calculation may lead to serious 
questions of convergence and/or stability. Dwyer (1970) in his attempt to 
calculate the boundary layer over a spinning cone encountered numerical 
instability when the zone of dependence was first ignored. For a certain class of 
linear problem, it has been shown (see Isaacson & Kellar) that stability and 
convergence imply each other. For non-linear problems such as the boundary- 
layer mse, little is known on such equivalence theory. It is not clear whether one 
can take the convergence for granted, even if no numerical instability ever 
occurred. The works of Der (1969) and Dwyer & McCroskey (1970) are just  such 
examples. Lack of a complete theory a t  the present time makes it difficult to say 
just what effects, if any, the violation of the rule may have on those calculated 
solutions. In  any case, it  will be surely better if the rule is followed throughout the 
computation. 

The concept of the zones of dependence and influence is useful also to the 
understanding of intricate questions. As an example, consider the symmetry- 
plane boundary-layer problem recently considered by Wang ( 1 9 7 0 ~ ) .  This type 
of problem was initiated by Moore (1953) for a supersonic cone. However, the 
validity of this approach has often been questioned; i.e. can one really solve the 
symmetry-plane boundary layer independent of the adjacent area, ‘1 A clear-cut 
explanation of this plausible question is otherwise difficult to give, but an easy 
answer can be found by simply pointing out that the zone of dependence is 
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satisfied there (Wang 1970b). For the symmetry plane, the general wedge- 
shaped zone of dependence for a three-dimensional boundary layer degenerates 
into the symmetry plane itself. 

7. New role of subcharacteristics 

(1968) to illustrate the theory of subcharacteristics are of the form 
The problems considered previously by Lagerstrom et aZ. (1949) and Cole 

E#xxt = #tt - #xx, ( 4 a )  

a$x+% = €(At-- #zx)7 (4b) 
where the subscripts denote differentiation, E is a small perturbation parameter, 
and a, b are constants. Equation (4a )  has the lines t = constant as characteristics 
and the lines x + t  = constant as the subcharacteristics; (46)  has the lines 
x & t = constant as characteristics and the lines bx - at = constant as the sub- 
characteristics. The zones of dependence and influence are determined by the 
characteristics. The subcharacteristics determine only the substructure of the 
flow; they gradually gain prominence only when the perturbation parameter E 

approaches zero. 
In  the present boundary-layer problem, the situation is different. The zones of 

dependenoe and influence are not determined by the characteristics alone. The 
subcharacteristics are not just playing a secondary role, instead they share the 
major role with the characteristics in completing the determination of the main 
flow structure. In  this respect, the present study exhibits a new aspect of the 
theory of subcharacteristics. 

8. Possible extensions 
Firstly we remark that equations (2)-( 3) for the characteristics and subcharac- 

teristics hold also for (1 a-d )  in general curvilinear co-ordinate systems. One needs 
only to replace the derivative terms like a/ax by a/hlaxl where h, is the metric 
coefficient along the x1 direction, similarly for the other two directions. 

Secondly, although our present discussion of using the subcharacteristics to 
complete the determination of the zones of influence and dependence is confined 
to the boundary-layer equations, the same idea can be obviously extended to 
more general partial differential equations. 

The author is indebted to Dr Stephen H. Maslen for reading the manuscript. 
This work was supported in part by the Air Force Office of Scientific Research 
under Contract F44620-70-C-0085. 

26-2 



404 K .  C .  Warzg 

REFERENCES 

COLE, J. D. 1968 Perturbation Methods in Applied Mathematics. Mass. : Blaisdell. 
COURANT, R. 1962 Methods of Mathematical Physics, Vol. 11. Now York: Interscience. 
DER, J. 1969 Amer. Inst. Aero. Astro. paper no. 69-138. 
DER, J. & RAETZ, G. S.  1962 Inst. Aeron Sci. Paper no. 62-70. 
DWYER, H. A. 1970 Bulletin Amer. Phys. Soc. Series 11, 15, 1555. 
DWYER, H. A. & MCCROSKEY, W. J. 1970 Amer. Inst. Aero. Astro. paper no. 7@50. 
HALL, M. G. 1967 Royal Aircraft Establishment T R  6714. 
ISSACSON, E. & KELLER, H. S. 1966 Analysis of Numerical Method. New York: Wiley. 
MOORE, F. K. 1953 J .  Aero. Sci. 20, 525-534. 
LAGERSTROM, P. A., COLE, J. D. & TRILLING, L. 1949 California Institute of Technology 

Report. 
PETROVSKY, I. G. 1954 Lectures on Partial Differential Equations. New York: Inter- 

science. 
RAETZ, G. S. 1957 Northrop Corporation Report NAI-58-73. 
SOMMERFELD, A. 1949 Partial Differential Equations in Physics. New York: Academic. 
WANG, K. C. 1969 Res. Inst. Advanced Studies TR 69-13. 
WANG, K. C. 1970a J. Fluid Mech. 43, 187-209. 
WANG, K. C. 1970b Res. Inst. Advanced Studies TR 70-07, also Amer. Inst. Aero. Astro. 

paper no. 71-130. 


